Assignment 8-solutions

Exercise 1

Let a and d be positive real numbers and B a standard Brownian motion.

1) Compute for $\lambda>0$

$$
\left.\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\left|B_{d}\right| \sqrt{2 \lambda}\right)\right) \mathbf{1}_{\left\{B_{d} \leq-a\right\}}\right] .
$$

2) Define $T_{1}:=\inf \left\{t \geq d: B_{t}=0\right\}$. Show that T_{1} is an $\mathbb{F}^{B, \mathbb{P}_{-} \text {-stopping time, and compute for any } \lambda>0}$

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{1}\right)\right], \text { and } \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{1}\right) \mathbf{1}_{\left\{B_{d} \leq-a\right\}}\right]
$$

Show then that $B_{T_{1}+d}$ is independent of B_{d} and T_{1}.
3) We now define τ_{1} by

$$
\tau_{1}:=\left\{\begin{array}{l}
d, \text { if } B_{d} \leq-a \\
T_{1}+d, \text { if } B_{d}>-a, \text { and } B_{T_{1}+d} \leq-a \\
+\infty, \text { otherwise }
\end{array}\right.
$$

Compute for any $\lambda>0$

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \tau_{1}\right)\right]
$$

4) Let now

$$
T_{2}:=\inf \left\{t \geq T_{1}+d: B_{t}=0\right\}
$$

As above we then introduce

$$
\tau_{2}:=\left\{\begin{array}{l}
d, \text { if } B_{d} \leq-a, \\
T_{1}+d, \text { if } B_{d}>-a, \text { and } B_{T_{1}+d} \leq-a \\
T_{2}+d, \text { if } B_{d}>-a, B_{T_{1}+d}>-a, \text { and } B_{T_{2}+d} \leq-a \\
+\infty, \text { otherwise }
\end{array}\right.
$$

Show that $B_{T_{2}+d}$ is independent of $\left(B_{T_{1}+d}, B_{d}\right)$ and T_{2}, then compute for any $\lambda>0$

$$
\mathbb{E}\left[\exp \left(-\lambda \tau_{2}\right)\right]
$$

1) We directly have

$$
\begin{aligned}
\left.\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\left|B_{d}\right| \sqrt{2 \lambda}\right)\right) 1_{\left\{B_{d} \leq-a\right\}}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-a / \sqrt{d}} \mathrm{e}^{-\sqrt{2 \lambda d}|x|} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x & =\frac{1}{\sqrt{2 \pi}} \int_{a / \sqrt{d}}^{\infty} \mathrm{e}^{-(x+\sqrt{2 \lambda d})^{2} / 2+\lambda d} \mathrm{~d} x \\
& =(1-\phi(a / \sqrt{d}+\sqrt{2 \lambda d})) \mathrm{e}^{\lambda d}
\end{aligned}
$$

2) The fact that T_{1} is stopping time is standard. We also have $T_{1} \stackrel{\text { law }}{=} d+\inf \left\{t \geq 0: B_{t+d}-B_{d}=-B_{d}\right\}$. By the weak Markov property and the time-invariance of Brownian motion, we know that W. $:=B_{\cdot+d}-B_{d}$ is a Brownian motion independent of B_{d}. Now, conditionally on B_{d}, the law of $T_{1}-d$ becomes the law of the first hitting time of $-B_{d}$ by the Brownian motion W. Again by symmetry, this is the same as the first hitting time of $\left|B_{d}\right|$, for which we know the Laplace transform by Assignment 6. Namely for any $\lambda \geq 0$

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda\left(T_{1}-d\right)\right) \mid B_{d}\right]=\exp \left(-\left|B_{d}\right| \sqrt{2 \lambda}\right)
$$

Thus we have that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{1}\right)\right]=\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\left|B_{d}\right| \sqrt{2 \lambda}\right)\right] \mathrm{e}^{-\lambda d} & =\frac{\mathrm{e}^{-\lambda d}}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{e}^{-\sqrt{2 \lambda d}|x|} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \mathrm{e}^{-(x+\sqrt{2 \lambda d})^{2} / 2} \mathrm{~d} x \\
& =\sqrt{\frac{2}{\pi}} \int_{\sqrt{2 \lambda d}}^{\infty} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x \\
& =2(1-\phi(\sqrt{2 \lambda d}))
\end{aligned}
$$

Similarly, using now 1)

$$
\left.\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{1}\right) \mathbf{1}_{\left\{B_{d} \leq-a\right\}}\right]=\mathrm{e}^{-\lambda d} \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\left|B_{d}\right| \sqrt{2 \lambda}\right)\right) \mathbf{1}_{\left\{B_{d} \leq-a\right\}}\right]=1-\phi(a / \sqrt{d}+\sqrt{2 \lambda d})
$$

Now notice that by the strong Markov property, $B_{T_{1}+d}-B_{T_{1}}=B_{T_{1}+d}$ is independent of $\mathcal{F}_{T_{1}}$, and thus in particular of B_{d} and T_{1} (since T_{1} is $\mathcal{F}_{T_{1}}$-measurable).
3) We have, using that $B_{T_{1}+d}$ is independent of B_{d} and T_{1}

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \tau_{1}\right)\right] & =\mathrm{e}^{-\lambda d} \mathbb{P}\left[B_{d} \leq-a\right]+\mathrm{e}^{-\lambda d} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\lambda T_{1}} \mathbf{1}_{\left\{B_{d}>-a\right\} \cap\left\{B_{T_{1}+d} \leq-a\right\}}\right] \\
& =\mathrm{e}^{-\lambda d} \phi(-a / \sqrt{d})+\mathrm{e}^{-\lambda d} \mathbb{P}\left[B_{T_{1}+d} \leq-a\right] \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\lambda T_{1}} \mathbf{1}_{\left\{B_{d}>-a\right\}}\right] \\
& =\mathrm{e}^{-\lambda d} \phi(-a / \sqrt{d})+\mathrm{e}^{-\lambda d}(1-2 \phi(\sqrt{2 \lambda d})+\phi(a / \sqrt{d}+\sqrt{2 \lambda d})) \mathbb{E}^{\mathbb{P}}\left[\phi\left(-a / \sqrt{T_{1}+d}\right)\right]
\end{aligned}
$$

4) We argue as in 3) to get that $B_{T_{2}+d}-B_{T_{2}}=B_{T_{2}+d}$ is independent of $\mathcal{F}_{T_{2}}$, and thus of $B_{d}, B_{T_{1}+d}$ and T_{2}. We also have that T_{2} and B_{d} themselves are independent. Then

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \tau_{2}\right)\right]= & \mathrm{e}^{-\lambda d} \mathbb{P}\left[B_{d} \leq-a\right]+\mathrm{e}^{-\lambda d} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\lambda T_{1}} \mathbf{1}_{\left\{B_{d}>-a\right\} \cap\left\{B_{T_{1}+d} \leq-a\right\}}\right] \\
& +\mathrm{e}^{-\lambda d} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\lambda T_{2}} \mathbf{1}_{\left\{B_{d}>-a\right\} \cap\left\{B_{T_{1}+d}>-a\right\} \cap\left\{B_{T_{2}+d} \leq-a\right\}}\right] \\
= & \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \tau_{1}\right)\right]+\mathrm{e}^{-\lambda d} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\lambda T_{2}} \mathbf{1}_{\left\{B_{d}>-a\right\} \cap\left\{B_{T_{1}+d}>-a\right\}}\right] \mathbb{P}\left[B_{T_{2}+d} \leq-a\right] \\
= & \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \tau_{1}\right)\right]+\mathrm{e}^{-\lambda d} \mathbb{E}^{\mathbb{P}}\left[\mathrm{e}^{-\lambda T_{2}} \mathbf{1}_{\left\{B_{T_{1}+d}>-a\right\}}\right](1-\phi(-a \sqrt{d})) \mathbb{E}^{\mathbb{P}}\left[\phi\left(-a / \sqrt{T_{2}+d}\right)\right]
\end{aligned}
$$

Notice also that as in 3 , we have $T_{2} \stackrel{\text { law }}{=} T_{1}+d+\inf \left\{t \geq 0: B_{t+T_{1}+d}-B_{T_{1}+d}=-B_{T_{1}+d}\right\}$. Thus

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{2}\right) \mid B_{T_{1}+d}, T_{1}\right]=\mathrm{e}^{-\lambda\left(T_{1}+d\right)} \exp \left(-\left|B_{T_{1}+d}\right| \sqrt{2 \lambda}\right)
$$

so that using the independence between T_{1} and $B_{T_{1}+d}$

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{2}\right)\right]=\mathrm{e}^{-\lambda d} \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{1}\right)\right] \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\left|B_{T_{1}+d}\right| \sqrt{2 \lambda}\right)\right]=4 \mathrm{e}^{-\lambda d}(1-\phi(\sqrt{2 \lambda d}))\left(1-\mathbb{E}^{\mathbb{P}}\left[\phi\left(\sqrt{2 \lambda\left(T_{1}+d\right)}\right)\right]\right)
$$

Exercise 2

Let B be a standard one-dimensional Brownian motion $\left(B_{t}\right)_{t \geq 0}$. We define

$$
X_{t}:=\frac{1}{t} \int_{0}^{t} \mathbf{1}_{\left\{B_{s}>0\right\}} \mathrm{d} s, t>0
$$

Our goal is to show that

$$
\mathbb{P}\left[X_{t}<u\right]=\frac{2}{\pi} \operatorname{Arcsin}(\sqrt{u}), 0 \leq u \leq 1, t>0
$$

1) What does X_{t} represent?
2) Show that the law of X_{t} is equal to the law of X_{1}, for any $t>0$.
3) We fix $\lambda>0$ and define for $(t, x) \in] 0,+\infty[\times \mathbb{R}$ the map

$$
v(t, x)=\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \int_{0}^{t} \mathbf{1}_{\left\{x+B_{s}>0\right\}} \mathrm{d} s\right)\right]
$$

as well as its Laplace transform

$$
g_{\rho}(x):=\int_{0}^{+\infty} v(t, x) \mathrm{e}^{-\rho t} \mathrm{~d} t, \rho>0
$$

Show that

$$
g_{\rho}(0)=\mathbb{E}^{\mathbb{P}}\left[\frac{1}{\rho+\lambda X_{1}}\right]
$$

4) Assuming that all functions appearing are smooth enough, show that v must satisfy

$$
\frac{\partial v}{\partial t}(t, x)=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}(t, x)-\lambda \mathbf{1}_{\{x>0\}} v(t, x)
$$

5) Deduce then that g_{ρ} must satisfy

$$
g_{\rho}^{\prime \prime}(x)=-2+2 \rho g_{\rho}(x)+2 \lambda \mathbf{1}_{x>0} g_{\rho}(x)
$$

6) Solve this ODE on \mathbb{R}, and deduce in particular that

$$
g_{\rho}(0)=\frac{1}{\sqrt{\rho(\lambda+\rho)}}
$$

7) Deduce that the result stated at the beginning of the exercise holds. You may want to use (and prove!) the following identity

$$
\frac{1}{\sqrt{1+\lambda}}=\frac{1}{\pi} \sum_{n=0}^{+\infty}(-\lambda)^{n} \int_{0}^{1} \frac{x^{n}}{\sqrt{x(1-x)}} \mathrm{d} x
$$

1) This is the average time that B spends above 0 .
2) By the scaling invariance of B, we have

$$
X_{t}=\int_{0}^{1} \mathbf{1}_{\left\{B_{t u}>0\right\}} \mathrm{d} u \stackrel{\text { law }}{=} \int_{0}^{1} \mathbf{1}_{\left\{\sqrt{t} B_{u}>0\right\}} \mathrm{d} u=\int_{0}^{1} \mathbf{1}_{\left\{B_{u}>0\right\}} \mathrm{d} u=X_{1}
$$

3) We have using Fubini's theorem and 1)

$$
\begin{aligned}
g_{\rho}(0) & =\int_{0}^{+\infty} \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \int_{0}^{t} \mathbf{1}_{\left\{B_{s}>0\right\}} \mathrm{d} s\right)\right] \mathrm{e}^{-\rho t} \mathrm{~d} t \\
& =\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{+\infty} \exp \left(-\lambda t X_{1}\right) \mathrm{e}^{-\rho t} \mathrm{~d} t\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\frac{1}{\rho+\lambda X_{1}}\right]
\end{aligned}
$$

4) Here one has to recognise that this is an application of Feynman-Kac formula (with a time-reversal to have a boundary condition at $t=0$ instead of $t-T$. More precisely, fix some \tilde{v} solving the PDE with the boundary condition $\tilde{v}(0, \cdot)=v(0, \cdot)=1$. Let us then define for some given $T>0$

$$
u(t, x):=\tilde{v}(T-t, x)
$$

It is immediate that u solves

$$
\frac{\partial u}{\partial t}(t, x)+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}(t, x)-\lambda \mathbf{1}_{\{x>0\}} u(t, x)=0,(t, x) \in[0, T) \times \mathbb{R}, u(T, x)=1, x \in \mathbb{R}
$$

Then, assuming smoothness, Feynman-Kac's formula tells us that

$$
u(t, x)=\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \int_{t}^{T} \mathbf{1}_{\left\{x+B_{s-t}>0\right\}} \mathrm{d} u\right)\right]
$$

so that

$$
\tilde{v}(t, x)=u(T-t, x)=\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \int_{T-t}^{T} \mathbf{1}_{\left\{x+B_{s-T+t}>0\right\}} \mathrm{d} u\right)\right]=v(t, x)
$$

5) We differentiate formally and then integrate by parts, recalling that v is bounded

$$
\begin{aligned}
g_{\rho}^{\prime \prime}(x)=\int_{0}^{+\infty} \frac{\partial^{2} v}{\partial x^{2}}(t, x) \mathrm{e}^{-\rho t} \mathrm{~d} t & =\int_{0}^{+\infty}\left(2 \frac{\partial v}{\partial t}(t, x)+\lambda \mathbf{1}_{\{x>0\}} v(t, x)\right) \mathrm{e}^{-\rho t} \mathrm{~d} t \\
& =2\left[v(\cdot, x) \mathrm{e}^{-\rho \cdot}\right]_{0}^{+\infty}+2 \rho \int_{0}^{+\infty} \mathrm{e}^{-\rho t} v(t, x) \mathrm{d} t+2 \lambda \mathbf{1}_{x>0} g_{\rho}(x) \\
& =-2+2 \rho g_{\rho}(x)+2 \lambda \mathbf{1}_{x>0} g_{\rho}(x)
\end{aligned}
$$

6) We will solve the ODE on $(-\infty, 0)$ and $(0,+\infty)$ separately and try to paste the solutions together. First, the general solution to the (linear) ODE on $(-\infty, 0)$ is classically given by (recall ρ is positive)

$$
\bar{g}_{\rho}(x)=A \exp (\sqrt{2 \rho} x)+B \exp (-\sqrt{2 \rho} x)+\frac{1}{\rho}, \text { for arbitrary }(A, B) \in \mathbb{R}^{2}
$$

Similarly, the general solution on $(0,+\infty)$ is

$$
\hat{g}_{\rho}(x)=C \exp (\sqrt{2(\rho+\lambda)} x)+D \exp (-\sqrt{2(\rho+\lambda)} x)+\frac{1}{\rho+\lambda}, \text { for } \operatorname{arbitrary}(C, D) \in \mathbb{R}^{2}
$$

Now recall that since v is bounded, some must be g_{ρ}, which implies that $B=C=0$. Now we have

$$
\hat{g}_{\rho}(0)=\bar{g}_{\rho}(0) \Longleftrightarrow A+\frac{1}{\rho}=D+\frac{1}{\rho+\lambda} \Longleftrightarrow D=\frac{\lambda}{\rho(\rho+\lambda)}+A
$$

Now if we also want the solution to be differentiable at 0 , we must have

$$
A \sqrt{2 \rho}=-\left(\frac{\lambda}{\rho(\rho+\lambda)}+A\right) \sqrt{2(\rho+\lambda)} \Longleftrightarrow A=-\frac{\sqrt{2(\rho+\lambda)}-\sqrt{2 \rho}}{\rho \sqrt{2(\rho+\lambda)}}=-\frac{1}{\rho}+\frac{1}{\sqrt{\rho(\lambda+\rho)}}
$$

This completely characterises a C^{1} solution of the ODE, which is C^{2} on \mathbb{R}^{\star}. In particular, we have as desired

$$
g_{\rho}(0)=\frac{1}{\sqrt{\rho(\lambda+\rho)}}
$$

7) We first show that for any $n \in \mathbb{N}$

$$
\int_{0}^{1} \frac{x^{n}}{\sqrt{x(1-x)}} \mathrm{d} x=\pi \frac{(2 n)!}{4^{n}(n!)^{2}}
$$

and the stated equality then stems from the known Taylor series for the inverse square root

$$
(1+\lambda)^{-1 / 2}=\sum_{n=0}^{+\infty}(-1)^{n} \frac{(2 n)!}{4^{n}(n!)^{2}} \lambda^{n}
$$

As for the first claim, one simply needs to recognise that

$$
\int_{0}^{1} \frac{x^{n}}{\sqrt{x(1-x)}} \mathrm{d} x=B\left(n+\frac{1}{2}, \frac{1}{2}\right)
$$

where B is the Beta function, which can be more simply rewritten in terms of Euler's Gamma function

$$
B\left(n+\frac{1}{2}, \frac{1}{2}\right)=\frac{\Gamma(n+1 / 2) \Gamma(1 / 2)}{\Gamma(n+1)}=\frac{\frac{(2 n)!\sqrt{\pi}}{4^{n} n!} \sqrt{\pi}}{n!}=\pi \frac{(2 n)!}{4^{n}(n!)^{2}}
$$

as desired.
Let now Y be a continuous random variable with

$$
\mathbb{P}[Y<u]=\frac{2}{\pi} \operatorname{Arcsin}(\sqrt{u}), 0 \leq u \leq 1
$$

One can check directly that Y has a density given by $f(u):=(\pi \sqrt{u(1-u)})^{-1} \mathbf{1}_{(0,1)}(u)$. Now what we want to show here is that the $v(t, 0)$ is the Laplace transform of Y, that is to say, using the series expansion of the exponential, and standard arguments to invert the summation and the integral

$$
v(t, 0)=\int_{0}^{1} \mathrm{e}^{-\lambda t u} f(u) \mathrm{d} u=\frac{1}{\pi} \int_{0}^{1} \sum_{n=0}^{+\infty} \frac{(-\lambda t)^{n}}{n!} \frac{u^{n}}{\sqrt{u(1-u)}} \mathrm{d} u=\sum_{n=0}^{+\infty} \frac{(-\lambda t)^{n}}{n!} \frac{(2 n)!}{4^{n}(n!)^{2}}
$$

Now we know that the Laplace transform of $v(\cdot, 0)$ is $g_{\rho}(0)$, so we just need to compute the Laplace transform of the right-hand side above

$$
\int_{0}^{+\infty} \mathrm{e}^{-\rho t} \sum_{n=0}^{+\infty} \frac{(-\lambda t)^{n}}{n!} \frac{(2 n)!}{4^{n}(n!)^{2}} \mathrm{~d} t=\frac{1}{\rho} \sum_{n=0}^{+\infty}\left(-\frac{\lambda}{\rho}\right)^{n} \frac{(2 n)!}{4^{n}(n!)^{2}}=\frac{1}{\rho} \frac{1}{\sqrt{1+\lambda / \rho}}=g_{\rho}(0)
$$

as desired.

