
Brownian motion and Stochastic Calculus
Dylan Possamaï

Assignment 8—solutions

Exercise 1

Let a and d be positive real numbers and B a standard Brownian motion.

1) Compute for λ > 0
EP

[
exp

(
− |Bd|

√
2λ

))
1{Bd≤−a}

]
.

2) Define T1 := inf{t ≥ d : Bt = 0}. Show that T1 is an FB,P–stopping time, and compute for any λ > 0

EP[
exp(−λT1)

]
, and EP[

exp(−λT1)1{Bd≤−a}
]
.

Show then that BT1+d is independent of Bd and T1.

3) We now define τ1 by

τ1 :=


d, if Bd ≤ −a,

T1 + d, if Bd > −a, and BT1+d ≤ −a,

+∞, otherwise.

Compute for any λ > 0
EP[

exp(−λτ1)
]
.

4) Let now
T2 := inf{t ≥ T1 + d : Bt = 0}.

As above we then introduce

τ2 :=


d, if Bd ≤ −a,

T1 + d, if Bd > −a, and BT1+d ≤ −a,

T2 + d, if Bd > −a, BT1+d > −a, and BT2+d ≤ −a,

+∞, otherwise.

Show that BT2+d is independent of (BT1+d, Bd) and T2, then compute for any λ > 0

E
[

exp(−λτ2)
]
.

1) We directly have

EP
[

exp
(

− |Bd|
√

2λ
))

1{Bd≤−a}

]
= 1√

2π

∫ −a/
√

d

−∞
e−

√
2λd|x|e−x2/2dx = 1√

2π

∫ ∞

a/
√

d

e−(x+
√

2λd)2/2+λddx

=
(
1 − ϕ

(
a/

√
d +

√
2λd

))
eλd.

2) The fact that T1 is stopping time is standard. We also have T1
law= d + inf{t ≥ 0 : Bt+d − Bd = −Bd}. By

the weak Markov property and the time-invariance of Brownian motion, we know that W· := B·+d − Bd

is a Brownian motion independent of Bd. Now, conditionally on Bd, the law of T1 − d becomes the law
of the first hitting time of −Bd by the Brownian motion W . Again by symmetry, this is the same as the
first hitting time of |Bd|, for which we know the Laplace transform by Assignment 6. Namely for any
λ ≥ 0

EP[
exp(−λ(T1 − d))

∣∣Bd

]
= exp

(
− |Bd|

√
2λ

)
.
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Thus we have that

EP[
exp(−λT1)

]
= EP

[
exp

(
− |Bd|

√
2λ

)]
e−λd = e−λd

√
2π

∫
R

e−
√

2λd|x|e−x2/2dx

=
√

2
π

∫ ∞

0
e−(x+

√
2λd)2/2dx

=
√

2
π

∫ ∞

√
2λd

e−x2/2dx

= 2
(
1 − ϕ

(√
2λd

))
.

Similarly, using now 1)

EP[
exp(−λT1)1{Bd≤−a}

]
= e−λdEP

[
exp

(
− |Bd|

√
2λ

))
1{Bd≤−a}

]
= 1 − ϕ

(
a/

√
d +

√
2λd

)
.

Now notice that by the strong Markov property, BT1+d − BT1 = BT1+d is independent of FT1 , and thus in
particular of Bd and T1 (since T1 is FT1-measurable).

3) We have, using that BT1+d is independent of Bd and T1

EP[
exp(−λτ1)

]
= e−λdP[Bd ≤ −a] + e−λdEP[

e−λT11{Bd>−a}∩{BT1+d≤−a}
]

= e−λdϕ
(

− a/
√

d
)

+ e−λdP[BT1+d ≤ −a]EP[
e−λT11{Bd>−a}

]
= e−λdϕ

(
− a/

√
d
)

+ e−λd
(
1 − 2ϕ

(√
2λd

)
+ ϕ

(
a/

√
d +

√
2λd

))
EP[

ϕ
(

− a/
√

T1 + d
)]

.

4) We argue as in 3) to get that BT2+d − BT2 = BT2+d is independent of FT2 , and thus of Bd, BT1+d and T2.
We also have that T2 and Bd themselves are independent. Then

EP[
exp(−λτ2)

]
= e−λdP[Bd ≤ −a] + e−λdEP[

e−λT11{Bd>−a}∩{BT1+d≤−a}
]

+ e−λdEP[
e−λT21{Bd>−a}∩{BT1+d>−a}∩{BT2+d≤−a}

]
= EP[

exp(−λτ1)
]

+ e−λdEP[
e−λT21{Bd>−a}∩{BT1+d>−a}

]
P[BT2+d ≤ −a]

= EP[
exp(−λτ1)

]
+ e−λdEP[

e−λT21{BT1+d>−a}
](

1 − ϕ
(

− a
√

d
))
EP[

ϕ
(

− a/
√

T2 + d
)]

Notice also that as in 3), we have T2
law= T1 + d + inf

{
t ≥ 0 : Bt+T1+d − BT1+d = −BT1+d

}
. Thus

EP[
exp(−λT2)

∣∣BT1+d, T1
]

= e−λ(T1+d) exp
(

− |BT1+d|
√

2λ
)
,

so that using the independence between T1 and BT1+d

EP[exp(−λT2)] = e−λdEP[exp(−λT1)]EP
[

exp
(

− |BT1+d|
√

2λ
)]

= 4e−λd
(
1 − ϕ

(√
2λd

))(
1 − EP[

ϕ
(√

2λ(T1 + d)
)])

.

Exercise 2

Let B be a standard one-dimensional Brownian motion (Bt)t≥0. We define

Xt := 1
t

∫ t

0
1{Bs>0}ds, t > 0.

Our goal is to show that
P[Xt < u] = 2

π
Arcsin(

√
u), 0 ≤ u ≤ 1, t > 0.

1) What does Xt represent?

2



2) Show that the law of Xt is equal to the law of X1, for any t > 0.

3) We fix λ > 0 and define for (t, x) ∈]0, +∞[×R the map

v(t, x) = EP
[

exp
(

− λ

∫ t

0
1{x+Bs>0}ds

)]
,

as well as its Laplace transform

gρ(x) :=
∫ +∞

0
v(t, x)e−ρtdt, ρ > 0.

Show that
gρ(0) = EP

[
1

ρ + λX1

]
.

4) Assuming that all functions appearing are smooth enough, show that v must satisfy

∂v

∂t
(t, x) = 1

2
∂2v

∂x2 (t, x) − λ1{x>0}v(t, x).

5) Deduce then that gρ must satisfy

g′′
ρ (x) = −2 + 2ρgρ(x) + 2λ1x>0gρ(x).

6) Solve this ODE on R, and deduce in particular that

gρ(0) = 1√
ρ(λ + ρ)

.

7) Deduce that the result stated at the beginning of the exercise holds. You may want to use (and prove!) the
following identity

1√
1 + λ

= 1
π

+∞∑
n=0

(−λ)n

∫ 1

0

xn√
x(1 − x)

dx.

1) This is the average time that B spends above 0.

2) By the scaling invariance of B, we have

Xt =
∫ 1

0
1{Btu>0}du

law=
∫ 1

0
1{

√
tBu>0}du =

∫ 1

0
1{Bu>0}du = X1.

3) We have using Fubini’s theorem and 1)

gρ(0) =
∫ +∞

0
EP

[
exp

(
− λ

∫ t

0
1{Bs>0}ds

)]
e−ρtdt

= EP
[ ∫ +∞

0
exp(−λtX1)e−ρtdt

]
= EP

[
1

ρ + λX1

]
.

4) Here one has to recognise that this is an application of Feynman–Kac formula (with a time-reversal
to have a boundary condition at t = 0 instead of t − T . More precisely, fix some ṽ solving the PDE with
the boundary condition ṽ(0, ·) = v(0, ·) = 1. Let us then define for some given T > 0

u(t, x) := ṽ(T − t, x).

3



It is immediate that u solves

∂u

∂t
(t, x) + 1

2
∂2u

∂x2 (t, x) − λ1{x>0}u(t, x) = 0, (t, x) ∈ [0, T ) × R, u(T, x) = 1, x ∈ R.

Then, assuming smoothness, Feynman–Kac’s formula tells us that

u(t, x) = EP
[

exp
(

− λ

∫ T

t

1{x+Bs−t>0}du

)]
,

so that
ṽ(t, x) = u(T − t, x) = EP

[
exp

(
− λ

∫ T

T −t

1{x+Bs−T +t>0}du

)]
= v(t, x).

5) We differentiate formally and then integrate by parts, recalling that v is bounded

g′′
ρ (x) =

∫ +∞

0

∂2v

∂x2 (t, x)e−ρtdt =
∫ +∞

0

(
2∂v

∂t
(t, x) + λ1{x>0}v(t, x)

)
e−ρtdt

= 2
[
v(·, x)e−ρ·]+∞

0 + 2ρ

∫ +∞

0
e−ρtv(t, x)dt + 2λ1x>0gρ(x)

= −2 + 2ρgρ(x) + 2λ1x>0gρ(x).

6) We will solve the ODE on (−∞, 0) and (0, +∞) separately and try to paste the solutions together.
First, the general solution to the (linear) ODE on (−∞, 0) is classically given by (recall ρ is positive)

ḡρ(x) = A exp
(√

2ρx
)

+ B exp
(

−
√

2ρx
)

+ 1
ρ

, for arbitrary (A, B) ∈ R2.

Similarly, the general solution on (0, +∞) is

ĝρ(x) = C exp
(√

2(ρ + λ)x
)

+ D exp
(

−
√

2(ρ + λ)x
)

+ 1
ρ + λ

, for arbitrary (C, D) ∈ R2.

Now recall that since v is bounded, some must be gρ, which implies that B = C = 0. Now we have

ĝρ(0) = ḡρ(0) ⇐⇒ A + 1
ρ

= D + 1
ρ + λ

⇐⇒ D = λ

ρ(ρ + λ) + A.

Now if we also want the solution to be differentiable at 0, we must have

A
√

2ρ = −
(

λ

ρ(ρ + λ) + A

)√
2(ρ + λ) ⇐⇒ A = −

√
2(ρ + λ) −

√
2ρ

ρ
√

2(ρ + λ)
= −1

ρ
+ 1√

ρ(λ + ρ)
.

This completely characterises a C1 solution of the ODE, which is C2 on R⋆. In particular, we have as
desired

gρ(0) = 1√
ρ(λ + ρ)

.

7) We first show that for any n ∈ N ∫ 1

0

xn√
x(1 − x)

dx = π
(2n)!

4n(n!)2 ,

and the stated equality then stems from the known Taylor series for the inverse square root

(1 + λ)−1/2 =
+∞∑
n=0

(−1)n (2n)!
4n(n!)2 λn.
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As for the first claim, one simply needs to recognise that∫ 1

0

xn√
x(1 − x)

dx = B

(
n + 1

2 ,
1
2

)
,

where B is the Beta function, which can be more simply rewritten in terms of Euler’s Gamma function

B

(
n + 1

2 ,
1
2

)
= Γ(n + 1/2)Γ(1/2)

Γ(n + 1) =
(2n)!

√
π

4nn!
√

π

n! = π
(2n)!

4n(n!)2 ,

as desired.

Let now Y be a continuous random variable with

P[Y < u] = 2
π

Arcsin(
√

u), 0 ≤ u ≤ 1.

One can check directly that Y has a density given by f(u) :=
(
π

√
u(1 − u)

)−11(0,1)(u). Now what we want
to show here is that the v(t, 0) is the Laplace transform of Y , that is to say, using the series expansion
of the exponential, and standard arguments to invert the summation and the integral

v(t, 0) =
∫ 1

0
e−λtuf(u)du = 1

π

∫ 1

0

+∞∑
n=0

(−λt)n

n!
un√

u(1 − u)
du =

+∞∑
n=0

(−λt)n

n!
(2n)!

4n(n!)2 .

Now we know that the Laplace transform of v(·, 0) is gρ(0), so we just need to compute the Laplace
transform of the right-hand side above∫ +∞

0
e−ρt

+∞∑
n=0

(−λt)n

n!
(2n)!

4n(n!)2 dt = 1
ρ

+∞∑
n=0

(
− λ

ρ

)n (2n)!
4n(n!)2 = 1

ρ

1√
1 + λ/ρ

= gρ(0),

as desired.
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