Brownian motion and Stochastic Calculus
Dylan Possamai

Assignment 8—solutions

Exercise 1

Let a and d be positive real numbers and B a standard Brownian motion.

1) Compute for A >0
EP [exp ( — |Bd‘\/ﬁ))1{3d§—a}]-

2) Define T} := inf{t > d: B; = 0}. Show that T} is an F5Fstopping time, and compute for any A > 0
E" [exp(—AT})], and Ep[exp(—)\Tl)l{BdS_a}].

Show then that Br, 44 is independent of By and T7.

3) We now define 7 by
d, if Bd < —a,
T1:=4T1+d, if By > —a, and B, +q < —a,
400, otherwise.

Compute for any A > 0
E? [exp(—)\ﬁ)].

4) Let now
Ty :=inf{t >T) +d: By =0}.

As above we then introduce

d, if Bd < —a,
Ty +d, if By > —a, and By, 44 < —a,
Ty +d, if By > —a, Br,+q > —a, and Br,4+q4 < —a,

400, otherwise.
Show that Br,4 is independent of (Br, 4, Bq) and Ts, then compute for any A > 0

E[exp(—A72)].
1) We directly have

1 —a/Vd
EP[QXP (- \Bd|‘/ﬁ)>1{3d§_a}] B / e VIl 2y — —(@+V2rd)*/242d g

27 —00 2“ /a, d

2) The fact that T3 is stopping time is standard. We also have T} faw d+inf{t > 0: By q — Bg = —Bg}. By
the weak Markov property and the time-invariance of Brownian motion, we know that W. := B.,; — By
is a Brownian motion independent of B;. Now, conditionally on By, the law of 77 — d becomes the law
of the first hitting time of —B,; by the Brownian motion W. Again by symmetry, this is the same as the
first hitting time of |By|, for which we know the Laplace transform by Assignment 6. Namely for any
A>0

EF [exp(—A(T1 — d))|Ba] = exp (— [Ba|V2)).



Thus we have that

E" [exp(—AT1)] = Ep{exp (- |Bd|\/ﬁ)}ef)‘d / —V2Xdjz| g —2?/2 4,

\/7/ —(32-‘1-\/2)\ ) /de
e
V2Xd

=2(1 - ¢(v2X\d)).

Similarly, using now 1)
EP [exp(~AT1) 1< )] = ¢ B [exp (= |BalV2X) 1(p,< )| = 1 = é(a/ Vi + V22d).

Now notice that by the strong Markov property, Br,+q — Br, = Br,+4 is independent of Fr,, and thus in
particular of B; and T (since T; is Fr,-measurable).

3) We have, using that Br, ;4 is independent of B; and T}

EF[exp(—=A11)] = e MP[By < —a] + e MEF [e M (5,5 _ayn(By, 1u<-a)]
= e Mg(—a/Vd) + e MP[Bry1q < —aE [e M 11,0 4]
= ¢ Mo~ a/Vd) + (1~ 26(VIN) + 6(a/Vd + V2AD)EF [6( — o/ VT + d)].

4) We argue as in 3) to get that By, 4 — Br, = Br,+q is independent of Fr,, and thus of By, Br, 14 and Ts.
We also have that T, and B; themselves are independent. Then

Ep[exp(—)ﬁg)] = e_’\dIP’[Bd < —a]+ e MEF [e_’\Tl1{Bd>_a}m{BTﬁd§_a}]
+e MEP [e_ATQ 1{Bd>*a}ﬂ{BTl+d>*a}ﬁ{BT2+dS*a}]
=E" [exp(=A71)] + e ME [e 2 1 p,5 (B, u>—a} |PIBry4a < —d

=Ef[exp(—=Ar)] + e ME [ 15, omay] (1 = ¢( — aVd))EF [¢( — a/ /T + d)]

Notice also that as in 3), we have T, faw T, + d + inf {t >0:Biyry4+d— Bryya = —BT1+d}. Thus
EP [exp(—/\Tg)’BTl+d, Tl] = e M1+ oxp ( — |BTl+d|\/2)\),
so that using the independence between 77 and Br, 14

EF [exp(—\T3)] = e MEF [exp(—\T})|EF [exp (- |BT1+d|\/ﬁ)} = 4e_>‘d(1 - qﬁ(\/m)) (1 —EF [6(v/2A(T1 + d))])

Exercise 2
Let B be a standard one-dimensional Brownian motion (B;);>o. We define

1

t
Xt = */ 1{BS>O}dS5 t > 0.
t Jo

Our goal is to show that
2
P[X; < u] = =Arcsin(vu), 0 <u <1, t>0.
T

1) What does X; represent?



2) Show that the law of X; is equal to the law of X, for any ¢ > 0.

3) We fix A > 0 and define for (¢, ) €]0, +oo[xR the map
t
v(t,x) = E {exp ( - A/ 1{:1:+B5>0}d5>:| ;
0

+oo
gp(x) ::/ v(t,z)e Ptdt, p > 0.
0

as well as its Laplace transform

Show that )
0)=E"| ——].
90(0) [p A X1:|
4) Assuming that all functions appearing are smooth enough, show that v must satisfy

ov 1 0%v

E(t’x) = 5@(757%) — M z>opv(t, @),

5) Deduce then that g, must satisfy
g, () = =24 2pg, () + 2A\1a>09, ().

6) Solve this ODE on R, and deduce in particular that
1

Ve +p)

7) Deduce that the result stated at the beginning of the exercise holds. You may want to use (and prove!) the
following identity

gp(O) =

1

12 ! x"
I+x ;(7)‘) /0 NZTES e

1) This is the average time that B spends above 0.

2) By the scaling invariance of B, we have

1 1 1
law
XtZ/ 1(p,,>0pdu :/ 1{¢zBu>o}d“:/ L, >0pdu = Xi.
0 0 0

3) We have using Fubini’s theorem and 1)

“+o00 t
9,(0) = / EF {exp < — )\/ l{BS>0}ds>} e Pidt
0 0

+oo
=EP {/ exp()\tXl)eptdt}
0

1
=E|———|.
[PJF)\XJ

4) Here one has to recognise that this is an application of Feynman—Kac formula (with a time-reversal
to have a boundary condition at ¢ = 0 instead of ¢ — 7. More precisely, fix some ¢ solving the PDE with
the boundary condition ¢(0, ) = v(0,-) = 1. Let us then define for some given 7" > 0

u(t,x) :=0(T — t, x).



It is immediate that u solves

ou 10%u

T

5 (t,2) = Mgsoyu(t,z) =0, (t,z) € [0,T) xR, u(T,z) =1, z € R.

Then, assuming smoothness, Feynman—Kac’s formula tells us that

T
u(t,z) = EF {exp ( - A/ 1{w+Bst>0}du):| :
t

T
o(t,x) =u(T —t,z) = EF [exp ( — /\/ 1{w+BsT+t>0}du>} =(t,x).
T—t

so that

5) We differentiate formally and then integrate by parts, recalling that v is bounded

"( )—/Jma%(t )—Ptdt—/m 2@(1& )+ A1 (t,x) Je rtdt
9p(T) = ; 022 ,r)e = ; ot , L {z>030(t, x) |e

+o0
=2[v(-, m)e_‘"];w + 2,0/0 e Pu(t,2)dt + 201,500, ()

= —2+4 2pg,(x) + 2\ 509, ().

6) We will solve the ODE on (—o00,0) and (0,+00) separately and try to paste the solutions together.
First, the general solution to the (linear) ODE on (—o0,0) is classically given by (recall p is positive)

1
gp(x) = Aexp (\/2;)1') + Bexp ( — \/pr) + =, for arbitrary (4, B) € R%.
P
Similarly, the general solution on (0, +00) is

dp(z) = Cexp (\/2(p+ N)z) + Dexp ( — /2(p+ N)z) + H%’ for arbitrary (C,D) € R?.

Now recall that since v is bounded, some must be g,, which implies that B = C = 0. Now we have

1 A
— e D=—"__ 4+ A
p+A p(p+A)

Now if we also want the solution to be differentiable at 0, we must have

. _ 1
gp(O):gP(O)<:>A+;=D+

_ (- N _ V2t NV 1 1
V2 = (P(P+>\)+A> 2oth) =4 oV 2(p+ N P+\/p()\+p).

This completely characterises a C'! solution of the ODE, which is C? on R*. In particular, we have as

desired
1

V(A +p)

gp(O) =

7) We first show that for any n € N

et

and the stated equality then stems from the known Taylor series for the inverse square root

“+oo
L+0)2=) (1" 4£2(Z?;2A"

n=0




As for the first claim, one simply needs to recognise that

n+ -

1
" 11
————dx =18
/o Va(l—z) ( 2’ 2)
where B is the Beta function, which can be more simply rewritten in terms of Euler’s Gamma function

@n)vmT
B( 11) D+ 1/20(1/2) _ 28 r (on))

"ty T+ D) nl e

as desired.

Let now Y be a continuous random variable with

PlY <u] = %Arcsin(\/a), 0<u<l.

One can check directly that Y has a density given by f(u) := (my/u(l — u))fll(o,l)(u). Now what we want
to show here is that the v(¢,0) is the Laplace transform of Y, that is to say, using the series expansion
of the exponential, and standard arguments to invert the summation and the integral

1 +c>o
tu )'
v(t,O):/ AU (y)du = — / n! 1—u 2 ek

Now we know that the Laplace transform of v(-,0) is ¢,(0), so we just need to compute the Laplace
transform of the right-hand side above

+o0 too n too n
N (AT @)t 1 A" @ 11
/0 ‘ z_: IR ,;) ( p) ()2 " p T+ Np = 90(0),

n=0

as desired.



